If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13x^2+24x-884=0
a = 13; b = 24; c = -884;
Δ = b2-4ac
Δ = 242-4·13·(-884)
Δ = 46544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{46544}=\sqrt{16*2909}=\sqrt{16}*\sqrt{2909}=4\sqrt{2909}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-4\sqrt{2909}}{2*13}=\frac{-24-4\sqrt{2909}}{26} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+4\sqrt{2909}}{2*13}=\frac{-24+4\sqrt{2909}}{26} $
| 2+1(-2+6)=10(-3x-6) | | -15-2(-11-6x)=2x+12 | | -1-3(4x+4)=2x+29 | | 10x-3=-7(3x+3)+8 | | 2x(x)+10x+9=2x | | 7y+6=-9+9(y-5) | | 15x-3(6x+5)=9 | | -6x-6(-4x-15)=-72 | | x3=1/1000000 | | 11,9b-2=9,9b+4 | | x+x+2+x+4+x+6=27•4 | | 7y=9y-12 | | 6x^2+8x+3x+4=0 | | 15+12x=-8-6x | | (2/3x)-1=(1/2)-3x | | 2/3x-1=1/2-3x | | 1.25=4^y | | 7x+24=15-12 | | 5y-8=9y=6 | | 2x-7=43-3x | | 8x+7=12x-9 | | X-6=|x-3|/(x-3) | | 13x-22=20 | | x(x-11)=(x+6)(x-6) | | x^2–6x+10=2x+3 | | 3×-5÷10+x+3÷2=22 | | 3x-5÷10+x+3÷2=22 | | 20x+5*156=3180 | | 10 1/2x-11=1/2x+12 | | 10 1/2x-11= 1/2x+12 | | 5t^2+15-20t=0 | | 2,7x-3=7x+5,8 |